Minimal Kernel Classifiers

نویسندگان

  • Glenn Fung
  • Olvi L. Mangasarian
  • Alexander J. Smola
چکیده

A finite concave minimization algorithm is proposed for constructing kernel classifiers that use a minimal number of data points both in generating and characterizing a classifier. The algorithm is theoretically justified on the basis of linear programming perturbation theory and a leave-one-out error bound as well as effective computational results on seven real world datasets. A nonlinear rectangular kernel is generated by systematically utilizing as few of the data as possible both in training and in characterizing a nonlinear separating surface. This can result in substantial reduction in kernel data-dependence (over 94% in six of the seven public datasets tested on) and with test set correctness equal to that obtained by using a conventional support vector machine classifier that depends on many more data points. This reduction in data dependence results in a much faster classifier that requires less storage. To eliminate data points, the proposed approach makes use of a novel loss function, the “pound” function (·)#, which is a linear combination of the 1-norm and the step function that measures both the magnitude and the presence of any error.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast Kernel Learning using Sequential Minimal Optimization

While classical kernel-based classifiers are based on a single kernel, in practice it is often desirable to base classifiers on combinations of multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for the support vector machine (SVM), and showed that the optimization of the coefficients of such a combination reduces to a convex optimization problem known as...

متن کامل

A Feature Selection Newton Method for Support Vector Machine Classification

A fast Newton method, that suppresses input space features, is proposed for a linear programming formulation of support vector machine classifiers. The proposed stand-alone method can handle classification problems in very high dimensional spaces, such as 28,032 dimensions, and generates a classifier that depends on very few input features, such as 7 out of the original 28,032. The method can a...

متن کامل

Training set approximation for kernel methods

We propose a technique for a training set approximation and its usage in kernel methods. The approach aims to represent data in a low dimensional space with possibly minimal representation error which is similar to the Principal Component Analysis (PCA). In contrast to the PCA, the basis vectors of the low dimensional space used for data representation are properly selected vectors from the tra...

متن کامل

Greedy Algorithm for a Training Set Reduction in the Kernel Methods

We propose a technique for a training set approximation and its usage in kernel methods. The approach aims to represent data in a low dimensional space with possibly minimal representation error which is similar to the Principal Component Analysis (PCA). In contrast to the PCA, the basis vectors of the low dimensional space used for data representation are properly selected vectors from the tra...

متن کامل

Designing Kernel Scheme for Classifiers Fusion

In this paper, we propose a special fusion method for combining ensembles of base classifiers utilizing new neural networks in order to improve overall efficiency of classification. While ensembles are designed such that each classifier is trained independently while the decision fusion is performed as a final procedure, in this method, we would be interested in making the fusion process more a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2002